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LARGE-PARTICLE STUDY OF THE FLOW AROUND WORKING BLADES 

IN A STEAM TURBINE 

Yu. M. Davydov, V. D. Kulikov, and E. V. Maiorskii UDC 621.165-226.1.001.5 

High supersonic velocities and a very complicated flow structure occur in the flow 
around the blade profiles in steam turbines, particularly the peripheral sections of the 
latter stages in low-pressure cylinders. It is therefore impossible to predict details of 
the flow. Measurements on such blades are complicated and expensive. It is therefore desir- 
able to use numerical simulation in a preliminary analysis of the flow structure. 

For example, calculations have been performed by Godunov's method [i] on the working 
and nozzle profiles [2-4]. 

The large-particle method is now widely used [5, 6], particularly for many aspects of 
gas dynamics, including the calculation of internal flows [7]. Here we demonstrate its use 
in numerical examination of a new class of topics: calculating the flow around turbine blade 
profiles. 

Figure 1 shows one of the sets of blades (form I). The calculations were performed for 
a_n inlet angle BI = 163 ~ , an angle of attack i = BI -- Bo = +--4~ ' , and a relative pitch of 
t = t/b = 1.02. 

We considered typical modes of flow around the blades, in which subsonic velocities 
MI = 0.5 occurred at the inlet and supersonic ones M2 = 1.9. 

The working region ACDE (Fig. i) of rectangular shape is split up into several zones 
differing in the sizes of the rectangular cells in the immobile net. The smallest cells lie 
in the regions of the inlet edges F and the outlet ones K, where the curvature is maximal. 
Here the profile contour was calculated with the necessary accuracy. 

The total number of cells varied from 4000 to 6000. The calculations were performed 
with an ES-1040 computer (OS operating system) on a FORTRAN program; the run time for one 
model was not more than 6 h. 

The boundary conditions were specified as follows. At the boundaries AC and ED, 
periodicity conditions applied. The boundary AE (Fig. i) was taken at a distance t along 
the normal to the input front (line aS). Test calculations showed that any further increase 
in this distance had no effect on the results. The conditions for constancy of the entropy 
S, total enthalpy Jo, and direction of the velocity vector BI were taken at the boundary AE: 

:S~p/pk~ 2onst, J 0 - k . . - 1 - p  + - 2 -  const,~ ~1 const~ 

where p ,  p,  W, and k a r e  c o r r e s p o n d i n g l y  p r e s s u r e ,  d e n s i t y ,  v e l o c i t y ,  and i s e n t r o p e  param-  
e t e r s ,  Also  we m a i n t a i n e d  t he  c o n d i t i o n  f o r  c o n s e r v a t i o n  o f  t he  l e f t  Riemann i n v a r i a n t  i n  
each t ime l a y e r  [ 8 ] :  RH = W--  2a(k  -- 1 ) ,  where  a = r  
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We examined the boundary conditions along CD for the maximum value of Mz, which showed 
that the distance along the normal to the front at the exit (line cd) cannot exceed t for an 
assembly of this type (calculations were performed in the range 0.2 t to 1.5 t). Figure 1 
shows the results: the lines ~ = W/a, = const (where a, is the critical velocity) and the 
directions of the velocity vectors for the case where the boundary CD la~ at distances of 1.0 
t (solid lines)and 1.5 t (dashed lines) for constantparameters along boundary CD. 

We also eiamined two ways of specifying the boundary conditions along CD: All the 
parameters in a fictitious cell layer were taken either as constant (with extension to this 
layer of the values of ~2 from the adjacent layer) or else only the pressure p= was taken as 
constant while conserving the right Riemann invariant and the entropy. Similar values for 
the flow parameters were obtained in the numerical calculations, which showed that both 
methods of specifying the boundary conditions at CD can be used in flow calculations. 

The conditions for no flow were specified along the profile contour. The fractional- 
cell approach [9] was used, as modified for the specific form of the profiles. A feature of 
these is that the profiles have very small relative thickness, so not all the necessary 
fictitious cells can be generated within the profile. They therefore would have to be speci- 
fied outside the physicalregion, which would cause difficulties in the program. Therefore, 
the method of specifying the boundary conditions along the profiles ruled out the specifica- 
tion of fietitous cells. 

The pressure at the profile within a fractional cell was taken as equal to the pressure 
at the center of this cell Pi,j' while the velocity vector was taken as equal to the component 

of the velocity vector W. . parallel to the line LM (Fig. 2). The parameters in the fractional 
1,3 

cell i, j were determined in the Euler stage by means of the following system of equations: 

r A n A n ~n n t ~+I/2,jPi+I/2j-- i-I/2,jP~-I/2,j + (Ai-1/2,j -- Ai+ll~,j) P~j] At ( 1 )  
~ ' ~  = ~ ' ~  - Ax ma~ ( A ~,j+ ~}~, A ~,~_~/~) &,jpZ~ 
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n A �9 pn .  A~ 
~n [ i,j4-1/2Pi,j+l/2 -- Ai,J--1/2Pi,J--1/2 + (Ai,j-1/2 i , j + l / 2 )  , ? ] ,  

~,a v.~j - -  Ag m a x  ( A i _ l / ~ j  A/+I/2, j )  .f~,~Pin, j 

r A n ~ A n u n n 
~n  E n . ] ~+~/~JP~+~/~,~u~+l/~,~ -- ~-l /~,~Pi-~/~j  ~-~/2,~ + ( A i - 1 / ~ j  -- A~+I/~j)  Pi,~ u 
E i , j  = , ~,~ - -  [ A x m a x  (Ai,~_l/~, Ai,~+l/~) 

+ 

A n n - -  n n n ] 
i , j+l/2P~j+l/~Vi, j+l/2 -- . ~ i , j _ l / 2 P i j _ l / ~ v i j _ l / 2  -I= ( A i j _ l / ~  - -  Aij+l/~.) Pi,~v~ A t  

+ h y  m a x  (Ai_~/2 j ,  Ai+I/2 , j )  J f~.,.#~3,/ 

where Ai+i/2,j, A~-~/27, A~,j+I/2, Ai,j-x/2 are the parts of the sides of the cells open for liquid 

flow. If the dontour intersects a cell along the LM line, thenA~+~/2,j=0. The following 

formulas give the vertical and horizontal velocity-vector components at the contour: 

where 

t g  ~ = A i ' j + l / 2 -  A i j - 1 / 2  
A$-I /~, j  Ai+l /2 , j  t 

System (i) corresponds in structure to a simple finite-difference approximation to the 
system of equations for whole cells [5 6] For example, the expression i+i/2,jPi+i/~.jis the 

pressure on part of the open side of a fractional cell (NM), while (A~-I/2,j --Ai+I/2,j)P~j is the 

pressure on the part of the side of that cell lying within the body. Consequently, the 

product A~-~/2,~-~/2,i corresponds to the pressure on the left open boundary of the cell, while 

the sum of theproducts A~+i/2jp~+~/2 J + (A~_l/~j_A~+~/2j)pi~j corresponds to that on the right frac- 

tional side (NO) of the cell. 

The equations for the Lagrange and final stages are then as in [9]. 

Figure 3 shows an array of profiles of a different configuration (form II) with ~ = 0.96. 
The flow calculations were performed for the same conditions as I (p, p, and W = const at the 
boundary CD). Then i = --i~ ' Comparison of the results (Fig. 3) with Fig. 1 shows that 
they are identical in the region of minimum cross section (the throat), while at the same time 
there is a substantial effect from the shape of the low-pressure side in oblique section on 
the character of the flow. There are also differences in the flow on the pressure side. 
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Figures 4 and 5 compare the Calculations (solid lines) for case II with experiments 
performed on a steam-dynamic tube at Moscow Power Institute: Fig. 4 compares the results 
for % = f(X) on the flow around the profile (X = x/b, where x is the distance from the inlet 
edge along the contour), and Fig. 5 compares the angles for the velocity vector behind the 
assembly at a distance 0.2b (profile chords) along the normal to the line cd at the length 
of one step. 

This example shows satisfactory agreement between calculation and experiment. Similar 
satisfactory agreement occurs for other flow conditions in these assemblies. We give for 
example a comparison for the characteristic of practical importance known as the relative 
circumferential force R = ru/[(po--p2)b] (po is the stagnation pressure ahead of the 

U 

assembly and p2 is the pressure behind it) acting on a single profile in case II with a 
variable inlet angle (Fig. 6). Here again there is satisfactory agreement between theory and 
experiment. In these calculations, the difference net was fairly coarse, so the fine struc- 
ture of the flow was not revealed in zones close to the profile edges. This feature does not 
have any substantial effect on most of the characteristics. The accuracy for details of the 
flow could be raised by using a computer faster than the ES-1040. This careful analysis con- 
firms that the~large-particle method is highly effective in application to the flow in a 
system of interacting bodies of complicated shape: a turbine blade assembly. This enables 
one to reduce the number of experiments required considerably in designing new assemblies and 
upgrading aerodynamic performance. 
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